Introducing the MEPS Variable Builder!

By Julia A. Rivera Drew

Earlier this year, IPUMS MEPS launched a new feature – the MEPS Variable Builder – to make it dramatically easier to create customized person-level variables that summarize information from the medical event and condition records and add them to your IPUMS extract. If you have ever thought about using the MEPS event and condition data but didn’t know where to begin because of the complexity of the data, the MEPS Variable Builder is for you!

The Medical Expenditure Panel Survey Household Component (MEPS-HC, referred to MEPS here) provides comprehensive information on characteristics of people residing in responding households, as well as information about their medical encounters during the calendar year – e.g., office-based provider visits, emergency room (ER) visits, and hospitalizations – and medical conditions associated with those medical encounters. This unique combination of information makes the MEPS data ideal for research questions that need detailed health care utilization and/or expenditure data alongside individual-level correlates of health. However, these rich data can be difficult to work with, creating barriers for researchers who wish to use the MEPS data.

IPUMS MEPS created the MEPS Variable Builder to enable users to easily build person-level variables summarizing information from the MEPS-HC event and medical condition records, also known as “event summary variables.” Using a point-and-click interface, researchers can create custom event summary variables that count the number of events or sum expenditures across event records, filtered on selected characteristics of events and/or medical conditions. Users can then include these custom event summary variables in their IPUMS extract. At this time, the variable builder does not include prescribed medicines data.

In this blog post, we run through an example where we create a variable that is the sum of all expenditures paid for by Workers’ Compensation for medical visits due to a workplace injury.

Continue reading…

Census Data for Good: Analysis to Action

By Lara Cleveland

IPUMS International regularly asks representatives of National Statistical Offices (NSOs) around the world to share their data with the research community. While IPUMS offers a license payment to countries for the right to redistribute microdata, NSO representatives are most interested in how sharing data with IPUMS will benefit the people of their countries. After 30 years of harmonizing data that NSOs have shared with us, IPUMS can indeed point to innovative research from data users all over the world, many at major universities in these partner countries. Directors of statistical offices, especially those with close ties to academia, are thrilled that the data are used for scholarly scientific production and for the purpose of educating the next generation. However, most of these leaders are much more interested in how data sharing leads to effective policy. And they want examples. They are essentially asking how the data have been “used for good,” as the original IPUMS tagline, “Use it for good!” implores.

Sustainable Development Goals Square Text Logo, color wheel as O in goals
IPUMS supports the Sustainable Development Goals

In response, IPUMS has been following data-to-policy trails where we can find them. The United Nations’ efforts to establish and measure the Sustainable Development Goals (SDGs) have provided wins in this area. Early in the life of the SDGs, colleagues from the World Health Organization visited IPUMS to leverage detailed information in the occupational variables for locating the health workforce. Microdata from censuses helped them measure the density of a range of health worker classifications at subnational levels. The International Organization for Migration (IOM) did similar work to disaggregate census-based SDGs by migratory status. At the start of the pandemic, The United Nations Population Fund (UNFPA) used IPUMS census microdata to spin up a dashboard showing the living arrangements of older adults, again at subnational levels. Each of these applications of IPUMS International data resulted in policy recommendations, informed by additional data, additional policy research, and pilot projects.

Continue reading…

Constructing comparable intimate partner violence indicators across the DHS, MICS, and PMA health surveys

By Miriam King, Anna Bolgrien, Mehr Munir, and Devon Kristiansen

The three data series comprising IPUMS Global Health—IPUMS DHS, IPUMS PMA, and IPUMS MICS—contain intersecting subjects related to women’s and children’s health, while retaining distinct patterns of temporal and geographic coverage. This content overlap opens the door to combining harmonized data across the three surveys, to extend time series and/or increase the number of countries in comparative analyses. However, there are important yet subtle differences between these survey types, in sample frames, questionnaire wording, and variable responses and universes, which require cautious consideration. As the example below demonstrates, researchers must use extra care to avoid errors when combining data across IPUMS DHS, MICS, and PMA.

A July 2024 article in the Journal of Public Health Policy, “Constructing Comparable Intimate Partner Violence Indicators across DHS, MICS, and PMA Health Surveys,” describes some challenges and solutions to combining data across these IPUMS databases, using measures of intimate partner violence as an example. The piece, authored by Devon Kristiansen and colleagues at IPUMS, notes two necessary steps in combining data across survey types:

  • Identify and combine only variables with similar question wording
  • Adjust the samples to include only comparable subpopulations

Continue reading…

Harmonized Malaria Indicator Survey (MIS) Data Now in IPUMS DHS

By Miriam King, Senior Research Scientist

Malaria is a pressing global health problem, with nearly 250 million malaria cases in 2022, according to the World Health Organization. Approximately 95 percent of malaria deaths were in Africa, with three-quarters of those deaths to children under 5. Climate change is increasing the transmission of mosquito-borne diseases, such as malaria. When IPUMS DHS recently received supplemental funding to support research on Climate Change Effects on Health, adding data on malaria was a top priority. Specifically, IPUMS DHS chose to integrate data from the DHS Malaria Indicator Surveys (MIS).

MIS have been fielded in nearly 30 African countries during the twenty-first century. Developed under an international partnership coordinating efforts to fight malaria, MIS surveys include some standard DHS variables on topics such as demographics, fertility, and household characteristics. MIS questionnaires also include hundreds of questions related to malaria. People’s knowledge about malaria causes, symptoms, and prevention; use of bednets; diagnosis and treatment of malaria, especially for pregnant women and children; exposure to public health messaging; and diagnostic blood testing for malaria in children under 5 are among the topics covered.

Map of Africa with the countries with MIS data in IPUMS DHS filled in with purple
Figure 1: Countries with MIS Data in IPUMS DHS

IPUMS DHS users now have access to harmonized data from 38 MIS samples, with geographic coverage shown in Figure 1. We prioritized harmonizing responses to MIS questions that matched variables already in the IPUMS DHS database, for approximately 700 widely available variables.

Continue reading…

Celebrating 30 Years: Three Decades of IPUMS Data

By Diana L. Magnuson; Curator and Historian, ISRDI

"Celebrating 30 years: three decades of IPUMS data" display case with promotional materials, swag items, and historical IPUMS items
“Celebrating 30 years: three decades of IPUMS data” display case at ISRDI Headquarters

“Celebrating 30 Years: Three Decades of IPUMS Data,” the current exhibit at ISRDI Headquarters, highlights thirty years of data innovation at the University of Minnesota. In the late 1980s, the Social History Research Laboratory at the University of Minnesota’s History Department proposed “the creation of a single integrated microdata series composed of public use samples for every year … with the exception of the 1890 census, which was destroyed by fire.” The primary aim was to make the U.S. census microdata “as compatible over time as possible while losing little, if any, of the detail in the original datasets.” (Integrated Public Use Microdata Series: A Prospectus).

Steven Ruggles remembers the moment he went into the History Department lounge on the sixth floor of the Social Science Tower and said, “IPUMS! Integrated Public Use Microdata Series! Isn’t that a great idea?” The response from the graduate research assistants was not enthusiastic. “What a terrible name! You can’t call it that!” According to Ruggles, “It was universal; everyone thought it was just a horrible name … It wasn’t a bad idea to propose, just a terrible thing to call it.” After a brief quandary over pronunciation (Ī-pŭms or Ĭ-pŭms), the name has stuck and is now synonymous with social research, data innovation, and free access. And for the record, we don’t care how you pronounce it, just as long as you cite it!

Continue reading…

Digitizing and Exploring Qatar’s Population Censuses

By Shine Min Thant

Qatar, a small yet influential state in the Middle East, is a very interesting case study for demographic research because of its rapid development over the past thirty years. Qatar occupies a peninsula only slightly larger than the U.S. state of Rhode Island that juts out into the Persian Gulf from its border with Saudi Arabia. The country has experienced relatively rapid economic growth since the late 20th century, mainly due to its vast reserves of natural gas and oil. This newfound wealth allowed Qatar to invest heavily in its healthcare, infrastructure, and education – therefore making the country an ideal case study for social change and development. Additionally, a recent surge in Qatar’s immigrant population (which constitutes over 78 percent of the population) also makes it an ideal country to study social mobility and social change.

As part of the ISRDI Diversity Fellowship Program, I worked with Dr. Tracy Kugler, Professor Steven Manson, Professor Evan Roberts, and undergraduate student Rawan AlGahtani on a project to examine Qatar’s change using census data from 1984, 1997, and 2004. Summary tables from all three censuses were previously only available as printed documents. As a first step, we needed to transform the data from a hard-to-get printed format to widely accessible IPUMS IHGIS format. This process included multiple steps from conducting optical character recognition (OCR) to conducting data quality checks using R scripts (Figure 1).

Figure 1: IPUMS IHGIS Workflow

A workflow schematic that highlights the process of preparing summary tables and source shapefiles into consistent and machine-readable formats via IPUMS IHGIS

Continue reading…