Digitizing and Exploring Qatar’s Population Censuses

By Shine Min Thant

Qatar, a small yet influential state in the Middle East, is a very interesting case study for demographic research because of its rapid development over the past thirty years. Qatar occupies a peninsula only slightly larger than the U.S. state of Rhode Island that juts out into the Persian Gulf from its border with Saudi Arabia. The country has experienced relatively rapid economic growth since the late 20th century, mainly due to its vast reserves of natural gas and oil. This newfound wealth allowed Qatar to invest heavily in its healthcare, infrastructure, and education – therefore making the country an ideal case study for social change and development. Additionally, a recent surge in Qatar’s immigrant population (which constitutes over 78 percent of the population) also makes it an ideal country to study social mobility and social change.

As part of the ISRDI Diversity Fellowship Program, I worked with Dr. Tracy Kugler, Professor Steven Manson, Professor Evan Roberts, and undergraduate student Rawan AlGahtani on a project to examine Qatar’s change using census data from 1984, 1997, and 2004. Summary tables from all three censuses were previously only available as printed documents. As a first step, we needed to transform the data from a hard-to-get printed format to widely accessible IPUMS IHGIS format. This process included multiple steps from conducting optical character recognition (OCR) to conducting data quality checks using R scripts (Figure 1).

Figure 1: IPUMS IHGIS Workflow

A workflow schematic that highlights the process of preparing summary tables and source shapefiles into consistent and machine-readable formats via IPUMS IHGIS

Continue reading…

Malaria Transmission in Context: Linking Health, Census, and Ecological Data

by Yara Ghazal, Ilyana Hohenkirk, Tracy Kugler, and Kelly Searle

Malaria, like many vector-borne diseases, impacts health, economic growth, and society. The burden of malaria incidence and death is concentrated in Sub-Saharan Africa; in 2020, 95% of all malaria cases and 96% of all deaths occurred in Sub-Saharan Africa (WHO, 2022). Malaria impacts not only population health but also the economic growth of these 32 countries. It is estimated that up to 1.3% of economic growth in this region of Africa is slowed each year due to malaria (CCP-JHU, 2015). Understanding malaria transmission is essential to ending its spread and creating a healthier and more prosperous future for developing nations.

The literature on malaria transmission patterns has shown that several environmental factors impact mosquito and parasite vital rates, and thus affect the transmission intensity, seasonality, and geographical distribution of malaria (Castro, 2017). Temperature and precipitation are the primary climate-based factors that influence malaria transmission patterns. Temperature creates geographical constraints for vector and parasite development. Increasing temperatures have been found to shorten mosquito maturation time and increase feeding frequency. However, areas of extremely high temperatures usually yield smaller, less fecund mosquitoes. In parallel, because mosquitoes often breed in pools formed by rainfall and flooding, the frequency, duration, and intensity of precipitation have a significant influence on mosquito populations.

Continue reading…

IHGIS Research Example: Fertilizer Use from Agricultural Census Data

By Chris M. Boyd

The IPUMS International Historical Geographic Information System (IHGIS) provides subnational data from agricultural and population and housing censuses from around the world. The agricultural census data cover a wide range of information on agricultural inputs, labor, production, and more, which can be used to explore a variety of research questions. IHGIS data can help understand, for instance, which factors contribute to better crop productivity, including the role of fertilizer use. Researchers have used agricultural census data at the subnational level to analyze the negative relationship between farm size and fertilizer overuse in China1; the relationship between maize yield, farm size and fertilizer and irrigation use in Mexico2; the use of chemical fertilizers in direct market farms in the U.S.3; and the environmental sustainability of using fertilizers, insecticides and pesticides in Pakistan4.

To date, IHGIS has released Agricultural Census tables for ten countries (see https://ihgis.ipums.org/dataset-descriptions), including seven developing countries in Africa and the Pacific Islands. These seven datasets include information about fertilizer use, though each measures it in a different way (see Table 1). Despite the differences, these data can reveal broad patterns in the use of fertilizer by farmers among these countries.

Continue reading…